CEWES MSRC/PET TR/98-26

The MPBench Report

by

Phillip J. Mucci
Kevin London

DoD HPC Modernization Program CEWES MSR G]

Programming Environment and Training

rer [Niichols

04h01998

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be

construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

The MPBench Report

Philip J. Mucci
Kevin London
mucci@cs.utk.edu
london@cs.utk.edu

March 1998

1 Introduction

MPBench is a benchmark to evaluate the performance of MPI and PVM on MPPs and
clusters of workstations. It uses a flexible and portable framework to allow benchmarking of
any message passing layer with similar send and receive semantics. It generates two types of
reports, consisting of the raw data files and Postscript graphs. No interpretation or analysis
of the data is performed, it is left entirely up to the user.

2 How it works

MPBench currently tests seven different MPI and PVM calls. MPI provides much richer
functionality that PVM does, so some of the benchmarks have been implemented in terms
of lower level PVM functions. The following functions are measured.

Benchmark Units Num Procs
Bandwidth Megabytes/sec 2.3
Roundtrip Transactions/sec 2,3
Application Latency | Microseconds 2,3
Broadcast Megabytes/sec 16
Reduce Megabytes/sec 16
AllReduce Megabytes/sec 16

AllReduce is a reduction operation in which all tasks receive the result. This function is
not available in PVM, so it is emulated by performing a reduce followed by a broadcast.

All tests are timed in the following manner.

1. Set up the test.

2. Start the timer.

3. Loop of operations over the message size as a power of two and the iteration count.
4. Verify that those operations have completed.

5. Stop the timer.

6. Compute the appropriate metric.

In MPBench, we avoid calling the timer around every operation, because this often results
in the faulty reporting of data. Some of these operations on MPP’s take so little time, that the
accuracy and latency of accessing the system’s clock would significantly affect the reported
data. Thus it is only appropriate that we perform our timing operations outside the loop.
Some MPP’s and workstations have the capability to access the system’s timer registers, but
this is not portable and would introduce unnecessary complexity into the code to compensate
for situations where the timing routines were not efficient.

For simplicity purposes, we will refer to two different types of tasks in MPBench, the
master of which there is only one, and the slaves of which their may be any number. The
point-to-point tests only use two tasks, a master and a slave. The other tests run with any
number of slaves, the default being sixteen.

MPBench averages performance over a number of iterations. The user should be aware
that MPBench will use a lower number of iterations than the one specified for certain sit-
uations. This should not effect the accuracy of the results, as the iteration count is only
changed when the message lengths are prohibitively large.

By default, MPBench measures messages from 4 bytes to 16 Megabytes, in powers of two
for 500 iterations. We iterate to make sure that the cache is “warmed” with the message
data. This is done because applications typically communicate data soon after computing
on it.

The previous version of MPBench did not pay attention to the placement of slave tasks.
This caused the user to make false claims about the performance of NUMA multiprocessors
like the Origin 2000 where a 2-task job will be scheduled on processors on the same physical
board. MPBench now measures point-to-point performance on MPI jobs with 2 and 3 tasks.

For the 3-task case, task 1 (of 0, 1 and 2) remains idle until the end of the run. In fact, this
arrangement does not guarantee that the remote processor is offboard, as that is dictated by
the MPI environment. However, our measurements seem to indicate that task 2 in a 3-task
job always performs slightly slower than task 1 of a 2-task job. We attribute this to extra
time required to arbitrate and negotiate the link.

2.1 Notes on PVM

PVM has a number of options to accelerate performance. For this benchmark, we are
interested in the optimal performance of the machine. In order to do so, we use the following
options where possible:

e Direct Routing - This option sets up direct TCP/IP connections between processes
as opposed to forward messages via daemon processes running on each node. It is
established by calling pvm_setopt (PvmRoute, PvmRouteDirect) .

o In-place Packing - All messages in PVM must be packed into PVM buffers before
transmission. This option tells PVM not to perform any additional copies of the
data, but to transmit the data directly out of the application’s buffer. This option
precludes the use of any data-translation with PVM. By default, in-place packing is
used whenever pvm_psend () is called, which is what is used in this program.

2.2 Notes on MPI

There are many different send and receive calls in MPI each with different semantics for
usage and completion. Here we focus on the default mode of sending. This means we are
not using any nonblocking or immediate communication calls. Each MPI implementation
handles the default mode a bit differently, but the algorithm is usually a derivative of the
following.

send first chunk of message
1f message 1s larger than size N
walt for reply and destination address Y
send rest of message directly to address Y
else
1f more to send
send rest of message
endif

MPI does this to avoid unnecessary copies of the data, which usually dominates the cost
of any communication layer. The receiving process will buffer a limited amount of data before
informing the sender of the destination address in the application. This way, a large message
is received directly into the application’s data structure rather than being held in temporary
storage like with PVM. The problem with this is that for large messages, sends cannot
complete before their corresponding receives. This introduces possibly synchronization
and portability problems.

2.3 Bandwidth

MPBench measures bandwidth with a doubly-nested loop. The outer loop varies the mes-
sage size, and the inner loop measures the send operation over the iteration count. After
the iteration count is reached, the slave process acknowledges the data it has received by
sending a four byte message back to the master. This informs the sender when the slaves
have completely finished receiving their data and are ready to proceed. This is necessary,
because the send on the master may complete before the matching receive does on the slave.
This exchange does introduce additional overhead, but given a large iteration count, its effect
is minimal.

The master’s pseudocode for this test is as follows:

do over all message sizes
start timer
do over iteration count
send (message size)
recv(4)
stop timer

The slave’s pseudocode is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
send (4)
stop timer

2.4 Roundtrip

Roundtrip times are measured in much the same way as bandwidth, except that, the slave
process, after receiving the message, echoes it back to the master. This benchmark is often
referred to as ping-pong. Here our metric is transactions per second, which is a common
metric for database and server applications. No acknowledgment is needed with this test as
it is implicit given its semantics.

The master’s pseudocode for this test is as follows:

do over all message sizes
start timer
do over iteration count
send (message size)
recv(message size)
stop timer

The slave’s pseudocode is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
send (message size)
stop timer

2.5 Application Latency

Application latency is something relatively unique to MPBench. This benchmark can prop-
erly be described as one that measures the time for an application to issue a send and
continue computing. The results for this test vary greatly given how the message passing
layer is implemented. For example, PVM will buffer all messages for transmission, regardless
of whether or not the remote node is ready to receive the data. MPI on the other hand,
will not buffer messages over a certain size, and thus will block until the remote process has
executed some form of a receive. This benchmark is the same as bandwidth except that
we do not acknowledge the data and we report our results in units of time. This bench-
mark very much represents the time our application will be waiting to do useful work while
communicating.
The master’s pseudocode for this test is as follows:

do over all message sizes
start timer
do over iteration count
send (message size)
stop timer

The slave’s pseudocode is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
stop timer

2.6 Broadcast and Reduce

The two functions are very heavily used in many parallel applications. Essentially these
operations are mirror images of one another, the difference being that reduce reverses the
direction of communication and performs some computation with the data during intermedi-
ate steps. Both of these benchmarks return the number of megabytes per second computed
from the iteration count and the length argument given to function call.

With PVM, broadcast and reduce will not complete unless the application has performed
a barrier immediately prior to the operation. Thus, with PVM both of these tests include
the cost of a barrier operation every iteration.

Here is the pseudocode for both the master and the slave:

do over all message sizes
start timer
do over iteration count
reduce or broadcast(message size)
stop timer

2.7 AllReduce

AllReduce is a derivative of an all-to-all communication, where every process has data for
every other. While this operation could easily be implemented with a reduce followed by a
broadcast, that would be highly inefficient for large message sizes. The PVM version of this
test does this exactly, plus an additional barrier call. The goal of including this benchmark

is to spot poor implementations so that the application engineer might be able to restructure
his communication.

Here is the pseudocode for both the master and the slave:

do over all message sizes
start timer
do over iteration count
allreduce(message size)
stop timer

3 Using MPBench

3.1 Obtain the Distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/~mucci/mpbench
ftp://cs.utk.edu/pub/mucci/mpbench.tar.gz

Now unpack the installation using gzip and tar.

pebbles> gzip -dc mpbench.tar.gz | tar xvf -

pebbles> cd mpbench

pebbles> 1s

cvs/ README index.html* make.def mpbench.c
Makefile conf/ lib/ make_graphs.sh* samples/

3.2 Build the distribution

First we must configure the build for our machine, operating system and release of MPI. All
configurations support PVM. Before configuration, make with no arguments lists the possible
targets.

pebbles> make
Please configure using one of the following targets:

sp2
t3e

pca-r8k

ozk

sgi32-lam
sgi64-lam
linux-lam
linux-mpich
solaris-mpich
sun4-mpich
alpha

Configure the build. Here, we are using a SunOS workstation, using MPICH as our MPI
implementation.

pebbles> make sun4-mpich
rm -f make.def
ln -s conf/make.def.sun4-mpich make.def

Now look at the available targets, and build one.

pebbles:mpbench> make
Please use one of the following targets:

mpi,pvm,all
run-mpi,run-pvm,run
graph-mpi,graph-pvm,graphs

pebbles> make all
gcc -02 -DINLINE -I/src/icl/MPI/mpich/include -DMPI -c mpbench.c -o mpibench.o
gcc -02 -DINLINE ./mpibench.o -o mpi_bench -L/src/icl/MPI/mpich/1lib/sun4/ch_p4 -lmpi

sed -e "s:MPIRUNCMD:mpirun:g" < lib/mpibench.sh | \
sed -e "s:MPIRUNOPTS::g" | \

sed -e "s:MPIRUNPROCS:-np:g" | \

sed -e "s:MPIHOSTFILE:-machinefile:g" | \

sed -e "s:MPIRUNPOSTOPTS:mpi_bench:g" > mpi_bench.sh

chmod +x mpi_bench.sh

gcc -I/shag/homes/mucci/pvm3/include -02 -DINLINE -DPVM -c mpbench.c -o pvmbench.o
gcc -02 -DINLINE ./pvmbench.o -o /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench \\

\ -L/shag/homes/mucci/pvm3/1ib/SUN4 -1lpvm3 -1lgpvm3

cp lib/pvmbench.sh /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.sh
chmod +x /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.sh

3.3 Running MPBench

While MPBench can be run from the command line, it is designed to be run from the
Makefile. When running MPI, sometimes it is required that you set up a hostfile containing
the names of the hosts on which to run the processes. If your installation requires a hostfile,
MPBench will tell you. If that happens, please check your mpirun man page for the format.
The resulting datafiles for each of the runs will be left in mpbench/results/<0S>-<HOSTNAME> <API> <test

pebbles> make run-mpi

Testing mpirun...

Current value is: mpirun -machinefile \\

\ /shag/homes/mucci/mpibench-hostfile -np 2 mpi_bench
/iMeasuring barrier for 500 iterations with 2 tasks...
/iMeasuring barrier for 500 iterations with 4 tasks...
/iMeasuring barrier for 500 iterations with 8 tasks...
/iMeasuring barrier for 500 iterations with 16 tasks...
Measuring latency for 500 iteratioms...

Measuring roundtrip for 500 iteratioms...

Measuring bandwidth for 500 iteratioms...

Measuring broadcast for 500 iterations with 16 tasks...
Measuring reduce for 500 iterations with 16 tasks...
Measuring allreduce for 500 iterations with 16 tasks...

Now we plot the results with GNUplot. If GNUplot is not available on your system,
perform the following.

e Unpack the distribution on a machine that does.
e Copy your results files to the new machine in the MPBench directory.

o Execute make graphs.sh with the common prefix of your datafiles

Normally, we can just do one of the following:

make graphs

make graph-mpi

make graph-pvm
pebbles> make graph-mpi

The graphs will be left in the results directory.

4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines during
dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the Cray T3E.

Machine Cache
SGI Origin 2000 | 32K, 4AMB
IBM SP 128K
Cray T3E SK,96K

10

4.1 Latency

Application Latency of MPI_Send at CEWES MSRC

T

Cray T3E, jim

100000 IBM 'SP, osprey

Origin 2000, pagh

Origin 2000, pagh with 3 pro%gn
¥

¥

#
.
10000

X

“El:*\

1000 o

Microseconds

100

/s
Mﬁﬁg

S B

10
b

4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 1: Application Latency of Send

In the Figure 1 we see three interesting performance variations. First note the jump in
latency of the O2K when the message is greater than 64 bytes. This is likely due to space
allocated in the header exchanged between two processes. Many message passing systems
allocate space in the header for a small payload so only one exchange is required. Next we
note the jump in latency on the SP for messages larger than 4096 bytes. This is the point
where IBM’s MPI switches to a rendezvous protocol. This is tunable from the command line
for poe, IBM’s version of mpirun, with the -eagerlimit argument. It is also tunable with
the MP_EAGERLIMIT environment variable. We recommend setting this to 16384 bytes for all
runs. In fact, IBM does this when running parallel benchmarks. Also, note the falloff in
performance at SMB on the T3E. This is found throughout all our communication graphs and
we are currently unable to explain it. On the Origin we see a steady increase in the latency
corresponding to the message size. The Origin exhibits extremely low latencies until they
exceed a cache size. These latencies suggest that the Origin might be suitable for applications
that do a lot of data exchange in small quantities. When the message exceeds the 64 byte
cache line on the Origin, it appears that some expensive routine is being called increasing

11

the latency more than twenty-fold. As far as the differences between Origin processors on
and off the node, it appears that the only time this is a factor is when messages are smaller
than the cache line size. Otherwise, the transmission time appears to be dominated by the
memory controller not the communication link.

12

4.2 Roundtrip

Roundtrip Time of MPI_Send at CEWES MSRC

40000

S R IBM SP, osprey -+
35000 8 Origin 2000, pagh -3--
’ : ¢ Origin 2000, pagh with 3 procs -

T
Cray T3E, jim <—
—
=]
b

30000

25000

20000

Transactions/sec

15000

10000

5000

=

0 B .
4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 2: Roundtrip Time of Ping-Pong

Figure 2 is a graph of the average roundtrip time for a message exchange. This test is
also commonly referred to as ping-pong. For small messages, roundtrip time is largely
dominated by protocol overheads and the method of access to the network hardware. Notice
in Figure 3 that while the bandwidth for the T3E are higher than for the Origin, the Origin
still outperforms it. An inversion takes place at 8K messages between the Origin and the
T3E. We deduce that the Origin with its distributed shared memory hardware provides a
very lightweight method of accessing remote memory. 8K is the page size of the Origin 2000,
so it is not surprising that a penalty is paid after crossing that boundary. For the 3-task test
case it appears that only very small message sizes are affected. At larger messages, the raw
link speed of the T3E clearly dominates, while the performance of the SP and the Origin
falters.

13

4.3 Bandwidth

Bandwidth of MPI_Send at CEWES MSRC

250 T
Cray T3E, jim <—
IBM $P, osprey -+--
Origin 2000, pagh -&--
Origin 2000, pagh with 3 procs -x
200
150
[S]
b
= B
) =)
e
= " - By
100
-
e
T
50 ;
o -

4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 3: Bandwidth of Send

In Figure 3, we note the dramatic effect of MPI's rendezvous protocol on all three machines.
The tradeoff is latency for bandwidth, but it doesn’t always appear to be valid. As mentioned,
the SP has a rather small limit of 4K, thus responsible for the fifty percent falloff at larger
message sizes. The Origin and the T3E both have an eager limit set to 16K, with only the
Origin suffering a loss in performance. Also of interest is the effect that caching has on the
Origin. As mentioned, these tests are repeated a number of times, so most of the data will
lie in the Origin’s large 4AMB level two cache. Note that for larger sizes, its performance
suffers severely. We recommend that users raise the default eager limit to 32K for their runs.

14

4.4 Broadcast

Performance of MPI_Bcast for 16 tasks at CEWES MSRC
70

T
Cray T3E, jim

)/ev—‘()/lg-M—g

o
5P (ég[%r +

Origin 2000, p SB--

60 X
50 \
oy

40

MB/sec

30 p_—

20

10

e

T
S

4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 4: Broadcast Performance

For Figure 4, we again note the dramatic drop-off found at the 8MB message size on the
T3E. For the Origin, we also notice the effect of cache. The user should be aware that this
test also includes the time for every task to send an acknowledge back to the master. In
Figure 5 we show the time steps for this test on an eight processor system. If we assume a
left-to-right ordered binary tree distribution algorithm, we receive our first acknowledgement
after log,(8) — 1 or 2 full sends. Our last acknowledgement arrives on the rightmost branch
after log,(8) + 1 or 4 full sends have completed. Note that in this test, the timer does not
stop until we receive the last acknowledgment. Relating our broadcast performance to our
bandwidth requires understanding that we must execute at least one send to transmit the
data. Thus to compare broadcast to bandwidth performance we must take into account the
first send. Therefore broadcast performance should be 1/log,(p) that of bandwidth. This
only holds true for machines that have no hardware assisted broadcast. Our results seem to
agree with this model.

15

%
SRUAY

Figure 5: Message time steps tree for 8 nodes

16

4.5 Reduce

Performance of MPI_Reduce for 16 tasks at CEWES MSRC

25 T
Cray T3E, jim <—
IBM SP, osprey ———..l
Origin 2000, pagh, & |
#
#
20 -

MB/sec
-
[6;]
5
ey
o
o
|
]

o

.

0 & S T |
4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 6: Reduce Performance

In Figure 6 we plot the performance of a reduction operation. Due to a change in the MPI
protocol, we would expect a graduate increase in performance after the initial drop. However,
because this is an iterated test, the cache may be hiding the effects of the MPI protocol and
exaggerating the cost of a distributed page fault. The large hump is where the message fits
into the level two cache. For the SP, the dip at the 4K message size is again related to the
small eager limit. Performance of the T3E increases steadily and levels off around 20MB/sec.
Notice the lack of a significant falloff at larger messages on the T3E. Also notice how poorly
the T3E performs in relation to Figure 4.

17

4.6 AllReduce

Performance of MPI_Allreduce for 16 tasks at CEWES MSRC
20 T
Cray T3E, jim <—
IBM SP, osprey -+l
18 Origir 2000, pagh

o/

N

*,f%

14 S
_#

12 Py

10 7

MB/sec

0= e
4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB
Message Size in bytes

Figure 7: AllReduce Performance

For Figure 7, we again notice the dramatic effect caching has on the Origin with performance
falling off around the 8MB mark. Comparing this graph with that of Figure 6, we note that
the SP and the T3E perform about twenty percent worse on Allreduce than on Reduce. The
Origin performs more than thirty percent worse, which is perhaps an architectural problem

related to network contention.

18

5 Future work

e Provide option for adjusting the test space.

e Provide the option for measuring a specific message size.

e Provide an option for cache flushing between transmission.

o Use specialized, high-resolution timers where available.

e Add benchmarks for MPI_Isend, MPI_Irecv, MPI_Irsend and MPI_Alltoall.
e Standardize configuration with GNU autoconf.

e (Grab machine configuration and store it with each run.

e Standardize data/graph naming scheme with timestamp.

6 References

PVM - Parallel Virtual Machine Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,
Robert Manchek, Vaidy Sunderam, MIT Press, Cambridge, 1994

MPI - The Complete Reference Marc Snir, Steve W. Otto, Steve Huss-Lederman, David
W. Walker, Jack Dongarra, MIT Press, Cambridge, 1996

19

